4.6 Article

Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots

Journal

PHYSICAL REVIEW B
Volume 68, Issue 16, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.68.165306

Keywords

-

Ask authors/readers for more resources

The evolution of the optical phonon spectra of colloidal core/shell CdSe/ZnS quantum dots with an increase of the shell thickness from 0.5 to 3.4 monolayers has been studied by resonant Raman spectroscopy. The results obtained suggest that the ZnS shell changes its structure from amorphous to partly crystalline as the thickness increases. Simultaneously, an increase in Raman scattering by surface (core/shell interface) phonons and the redshift of the corresponding phonon band have been observed and assigned to variations in the shell structure. The disorder present in the shell provides a major contribution to the line shape of the Raman spectra at higher ZnS coverage. A method to control the quality of quantum dots based on Raman spectroscopy is proposed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available