4.7 Article

Activation of adenosine A1 receptor attenuates cardiac hypertrophy and prevents heart failure in murine left ventricular pressure-overload model

Journal

CIRCULATION RESEARCH
Volume 93, Issue 8, Pages 759-766

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.RES.0000094744.88220.62

Keywords

adenosine; cardiomyopathy; echocardiography; heart failure; myocytes

Ask authors/readers for more resources

Sympathomimetic stimulation, angiotensin II, or endothelin-1 is considered to be an essential stimulus mediating ventricular hypertrophy. Adenosine is known to protect the heart from excessive catecholamine exposure, reduce production of endothelin-1, and attenuate the activation of the renin-angiotensin system. These findings suggest that adenosine may also attenuate myocardial hypertrophy. To verify this hypothesis, we examined whether activation of adenosine receptors can attenuate cardiac hypertrophy and reduce the risk of heart failure. Our in vitro study of neonatal rat cardiomyocytes showed that 2-chloroadenosine (CADO), a stable adenosine analogue, inhibits protein synthesis of cardiomyocytes induced by phenylephrine, endothelin-1, angiotensin II, or isoproterenol, which were mimicked by the stimulation of adenosine A(1) receptors. For our in vivo study, cardiac hypertrophy was induced by transverse aortic constriction (TAC) in C57BL/6 male mice. Four weeks after TAC, both heart to body weight ratio (6.80+/-0.18 versus 8.34+/-0.33 mg/g, P<0.0001) as well as lung to body weight ratio (6.23+/-0.27 versus 10.03+/-0.85 mg/g, P<0.0001) became significantly lower in CADO-treated mice than in the TAC group. Left ventricular fractional shortening and left ventricular dP/dt(max) were improved significantly by CADO treatment. Similar results were obtained using the selective adenosine A(1) agonist N-6-cyclopentyladenosine (CPA). A nonselective adenosine antagonist, 8-(p-sulfophenyl)-theophylline, and a selective adenosine A(1) antagonist, 8-cyclopentyl-1,3-dipropylxanthine, eliminated the antihypertrophic effect of CADO and CPA, respectively. The plasma norepinephrine level was decreased and myocardial expression of regulator of G protein signaling 4 was upregulated in CADO-treated mice. These results indicate that the stimulation of adenosine receptors attenuates both the cardiac hypertrophy and myocardial dysfunction via adenosine A(1) receptor-mediated mechanisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available