4.8 Article

Transcriptional repression of atherogenic inflammation:: Modulation by PPARδ

Journal

SCIENCE
Volume 302, Issue 5644, Pages 453-457

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.1087344

Keywords

-

Funding

  1. NHLBI NIH HHS [HL69474] Funding Source: Medline

Ask authors/readers for more resources

The formation of an atherosclerotic lesion is mediated by lipid-laden macrophages (foam cells), which also establish chronic inflammation associated with lesion progression. The peroxisome proliferator-activated receptor (PPAR) gamma promotes lipid uptake and efflux in these atherogenic cells. In contrast, we found that the closely related receptor PPARdelta controls the inflammatory status of the macrophage. Deletion of PPARdelta from foam cells increased the availability of inflammatory suppressors, which in turn reduced atherosclerotic lesion area by more than 50%. We propose an unconventional ligand-dependent transcriptional pathway in which PPARdelta controls an inflammatory switch through its association and disassociation with transcriptional repressors. PPARdelta and its ligands may thus serve as therapeutic targets to attenuate inflammation and slow the progression of atherosclerosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available