4.7 Article Proceedings Paper

A dynamic model for an asymmetrical vehicle/track system

Journal

JOURNAL OF SOUND AND VIBRATION
Volume 267, Issue 3, Pages 591-604

Publisher

ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD
DOI: 10.1016/S0022-460X(03)00726-0

Keywords

-

Ask authors/readers for more resources

A finite element model to simulate an asymmetrical vehicle/track dynamic system is proposed in this paper. This model consists of a 10-degree-of-freedom (d.o.f.) vehicle model, a track model with two rails, and an adaptive wheel/rail contact model. The surface defects of wheels and rails can be simulated with their geometry and an endless track model is adopted in the model. All time histories of forces, displacements, velocities and accelerations of all components of the vehicle and track can be obtained simultaneously. By using this model, one can study the effect that wheel/rail interaction from one side of the model has on the other. This can be done for many asymmetrical cases that are common in railway practice such as a wheel flat, wheel shelling, out-of-round wheel, fatigued rail, corrugated rail, head-crushed rail, rail joints, wheel/rail roughness, etc. Only two solutions are reported in this paper: steady state interaction and a wheel flat. (C) 2003 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available