4.6 Article

Subunit arrangement in V-ATPase from Thermus thermophilus

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 278, Issue 43, Pages 42686-42691

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M305853200

Keywords

-

Ask authors/readers for more resources

The V0V1-ATPase of Thermus thermophilus catalyzes ATP synthesis coupled with proton translocation. It consists of an ATPase-active V-1 part (ABDF) and a proton channel V-0 part (CLEGI), but the arrangement of each subunit is still largely unknown. Here we found that acid treatment of V0V1-ATPase induced its dissociation into two subcomplexes, one with subunit composition ABDFCL and the other with EGI. Exposure of the isolated V0 to acid or 8 M urea also produced two subcomplexes, EGI and CL. Thus, the C subunit (homologue of d subunit, yeast Vma6p) associates with the L subunit ring tightly, and I (homologue of 100-kDa subunit, yeast Vph1p), E, and G subunits constitute a stable complex. Based on these observations and our recent demonstration that D, F, and L subunits rotate relative to A(3)B(3) (Imamura, H., Nakano, M., Noji, H., Muneyuki, E., Ohkuma, S., Yoshida, M., and Yokoyama, K. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 2312-2315; Yokoyama, K., Nakano, M., Imamura, H., Yoshida, M., and Tamakoshi, M. (2003) J. Biol. Chem. 278, 24255-24258), we propose that C, D, F, and L subunits constitute the central rotor shaft and A, B, E, G, and I subunits comprise the surrounding stator apparatus in the V0V1-ATPase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available