4.6 Article

Different functional properties of troponin T mutants that cause dilated cardiomyopathy

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 278, Issue 43, Pages 41670-41676

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M302148200

Keywords

-

Funding

  1. NHLBI NIH HHS [HL 42325, HL 67415] Funding Source: Medline

Ask authors/readers for more resources

The effects of Troponin T (TnT) mutants R141W and DeltaK210, the only two currently known mutations in TnT that cause dilated cardiomyopathy(DCM) independent of familial hypertrophic cardiomyopathy (FHC), and TnT-K273E, a mutation that leads to a progression from FHC to DCM, were investigated. Studies on the Ca2+ sensitivity of force development in porcine cardiac fibers demonstrated that TnT-DeltaK210 caused a significant decrease in Ca2+ sensitivity, whereas the TnT-R141W did not result in any change in Ca2+ sensitivity when compared with human cardiac wild-type TnT (HC-WTnT). TnT-DeltaK210 also caused a decrease in maximal force when compared with HCWTnT and TnT-R141W. In addition, the TnT-DeltaK210 mutant decreased maximal ATPase activity in the presence of Ca2+. However, the TnT-K273E mutation caused a significant increase in Ca2+ sensitivity but behaved similarly to HCWTnT in actomyosin activation assays. Inhibition of ATPase activity in reconstituted actin-activated myosin ATPase assays was similar for all three TnT mutants and HCWTnT. Additionally, circular dichroism studies suggest that the secondary structure of all three TnT mutants was similar to that of the HCWTnT. These results suggest that a rightward shift in Ca2+ sensitivity is not the only determinant for the phenotype of DCM.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available