4.6 Article

High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride

Journal

APPLIED PHYSICS LETTERS
Volume 83, Issue 17, Pages 3474-3476

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1621462

Keywords

-

Ask authors/readers for more resources

Confinement of silicon nanoparticles in silicon nitride instead of an oxide matrix might materially facilitate its potential applications as a light-emitting component in optoelectronics. We report in this letter the production of high-density (up to 4.0x10(12)/cm(2) from micrographs) silicon nanoparticles in SiNx thin films by chemical vapor deposition on cold substrates. Strong room-temperature photoluminescence was observed in the whole visible light range from the deposits that were postannealed at 500 degreesC for 2 min. The Si-in-SiNx films provide a significantly more effective photoluminescence than Si-in-SiOx fabricated with similar processing parameters: for blue light, the external quantum efficiency is over three times as large. The present results demonstrate that the nanostructured Si-in-SiNx system can be a very competitive candidate for the development of tunable high-efficiency light-emitting devices. (C) 2003 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available