4.6 Article

Quantum-dot optical temperature probes

Journal

APPLIED PHYSICS LETTERS
Volume 83, Issue 17, Pages 3555-3557

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1620686

Keywords

-

Ask authors/readers for more resources

The steady-state photoluminescence (PL) properties of cadmium selenide quantum dots (QDs) with a zinc sulfide overlayer [(CdSe)ZnS] can be strongly dependent on temperature in the range from 100 to 315 K. The PL intensity from 50 to 55 Angstrom (CdSe)ZnS QDs in poly(lauryl methacrylate) matrices increases by a factor of similar to5 when the temperature is decreased from 315 to 100 K, and the peak of the emission band is blueshifted by 20 nm over the same range. The change in PL intensity is appreciable, linear, and reversible (-1.3% per degreesC) for temperatures close to ambient conditions. These properties of (CdSe)ZnS dots are retained in a variety of matrices including polymer and sol-gel films, and they are independent of excitation wavelength above the band gap. The significant temperature dependence of the luminescence combined with its insensitivity to oxygen quenching establishes (CdSe)ZnS dots as optical temperature indicators for temperature-sensitive coatings. (C) 2003 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available