4.8 Article

Peripheral, non-centrosome-associated microtubules contribute to spindle formation in centrosome-containing cells

Journal

CURRENT BIOLOGY
Volume 13, Issue 21, Pages 1894-1899

Publisher

CELL PRESS
DOI: 10.1016/j.cub.2003.10.002

Keywords

-

Ask authors/readers for more resources

In centrosome-containing cells, microtubules utilized in spindle formation are thought to be nucleated at the centrosome. However, spindle formation can proceed following experimental destruction of centrosomes [1] or in cells lacking centrosomes [2], suggesting that non-centrosome-associated microtubules may contribute to spindle formation, at least when centrosomes are absent. Direct observation of prometaphase cells expressing GFP-alpha-tubulin shows that peripheral, non-centrosome-associated microtubules, are utilized in spindle formation, even in the presence of centrosomes. Clusters of peripheral microtubules moved into the centrosomal region, demonstrating that a centrosomal microtubule array can be composed of both centrosomally nucleated and peripheral microtubules. Peripheral bundles also moved laterally into the forming spindle between the spindle poles; 3D reconstructions of fixed cells reveal interactions between peripheral and centrosome-associated microtubules. The spindle pole component NuMA and gamma-tubulin were present at the foci of peripheral microtubule clusters, indicating that microtubules moved into the spindle with minus ends leading. Photobleach-and photoactivation-marking experiments of cells expressing GFP-tubulin or a photoactivatable variant of GFP-tubulin, respectively, demonstrate that microtubule motion into the forming spindle results from transport and sliding interactions, not treadmilling. Our results directly demonstrate that non-centrosome-associated microtubules contribute to spindle formation in centrosome-containing cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available