4.8 Article

Expression of T cell receptor β locus in central nervous system neurons

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1735415100

Keywords

-

Funding

  1. NINDS NIH HHS [5F32 NS 41890-02, F32 NS041890] Funding Source: Medline

Ask authors/readers for more resources

MHC class I proteins are cell-surface ligands that bind to T cell receptors and other immunoreceptors and act to regulate the activation state of immune cells. Recent work has shown that MHC class I genes and CD3zeta, an obligate component of T cell receptors, are expressed in neurons, are regulated by neuronal activity, and function in neuronal development and plasticity. A search for additional neuronally expressed T cell receptor components has revealed that the T cell antigen receptor 13 (TCRbeta) locus is expressed in neurons of the murine central nervous system and that this expression is dynamically regulated over development. In neonates, expression is most abundant in various thalamic nuclei. At later ages and in adults, thalamic expression fades and cortical expression is robust, particularly in layer 6. In T cells, protein-encoding transcripts are produced only after recombination of the TCRbeta genomic locus, which joins variable, diversity, and joining regions, a process that creates much of the diversity of the immune system. We detect no genomic recombination in neurons. Rather, transcripts begin in regions upstream of several joining regions, and are spliced to constant region segments. One of the transcripts encodes a hypothetical 207-aa, 23-kDa protein, which includes the TCRbeta J2.7 region, and the entire C region. These observations suggest that TCRbeta may function in neurons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available