4.7 Article

Early Permian Pangea 'B' to Late Permian Pangea 'A'

Journal

EARTH AND PLANETARY SCIENCE LETTERS
Volume 215, Issue 3-4, Pages 379-394

Publisher

ELSEVIER
DOI: 10.1016/S0012-821X(03)00452-7

Keywords

paleomagnetism; Permian; Southern Alps; Pangea

Ask authors/readers for more resources

configuration since Ted Irving introduced Pangea 'B' by placing Gondwana farther to the east by similar to3000 kin with respect to Laurasia on the basis of paleomagnetic data. New paleomagnetic data from radiometrically dated Early Permian volcanic rocks from parts of Adria that are tectonically coherent with Africa (Gondwana), integrated with published coeval data from Gondwana and Laurasia, again only from igneous rocks, fully support a Pangea 'B' configuration in the Early Permian. The use of paleomagnetic data strictly from igneous rocks excludes artifacts from sedimentary inclination error as a contributing explanation for Pangea 'B'. The ultimate option to reject Pangea 'B' is to abandon the geocentric axial dipole hypothesis by introducing a significant non-dipole (zonal octupole) component in the Late Paleozoic time-averaged geomagnetic field. We demonstrate, however, by using a dataset consisting entirely of paleomagnetic directions with low inclinations from sampling sites confined to one hemisphere from Gondwana as well as Laurasia that the effects of a zonal octupole field contribution would not explain away the paleomagnetic evidence for Pangea 'B' in the Early Permian. We therefore regard the paleomagnetic evidence for an Early Permian Pangea 'B' as robust. The transformation from Pangea 'B' to Pangea 'A' took place during the Permian because Late Permian paleomagnetic data allow a Pangea 'A' configuration. We therefore review geological evidence from the literature in support of an intra-Pangea dextral megashear system. The transformation occurred after the cooling of the Variscan mega-suture and lasted similar to20 Myr. In this interval, the Neotethys Ocean opened between India/Arabia and the Cimmerian microcontinents in the east, while widespread lithospheric wrenching and magmatism took place in the west around the Adriatic promontory. The general distribution of plate boundaries and resulting driving forces are qualitatively consistent with a right-lateral shear couple, between Gondwana and Laurasia during the Permian. Transcurrent plate boundaries associated with the Pangea transformation reactivated Variscan shear zones and were subsequently exploited by the opening of western Neotethyan seaways in the Jurassic. (C) 2003 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available