4.6 Article

Physical interactions of the peroxisomal targeting signal 1 receptor Pex5p, studied by fluorescence correlation spectroscopy

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 278, Issue 44, Pages 43340-43345

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M307789200

Keywords

-

Ask authors/readers for more resources

We have studied Hansenula polymorpha Pex5p and Pex8p using fluorescence correlation spectroscopy (FCS). Pex5p is the Peroxisomal Targeting Signal 1 (PTS1) receptor and Pex8p is an intraperoxisomal protein. Both proteins are essential for PTS1 protein import and have been shown to physically interact. We used FCS to analyze the molecular role of this interaction. FCS is a very sensitive technique that allows analysis of dynamic processes of fluorescently marked molecules at equilibrium in a very tiny volume. We used this technique to determine the oligomeric state of both peroxins and to analyze binding of Pex5p to PTS1 peptides and Pex8p. HpPex5p and HpPex8p were overproduced in Escherichia coli, purified by affinity chromatography, and, when required, labeled with the fluorescent dye Alexa Fluor 488. FCS measurements revealed that the oligomeric state of HpPex5p varied, ranging from monomers at slightly acidic pH to tetramers at neutral pH. HpPex8p formed monomers at all pH values tested. Using fluorescein-labeled PTS1 peptide and unlabeled HpPex5p, we established that PTS1 peptide only bound to tetrameric HpPex5p. Upon addition of HpPex8p, a heterodimeric complex was formed consisting of one HpPex8p and one HpPex5p molecule. This process was paralleled by dissociation of PTS1 peptide from HpPex5p, indicating that Pex8p may play an important role in cargo release from the PTS1 receptor. Our data show that FCS is a powerful technique to explore dynamic physical interactions that occur between peroxins during peroxisomal matrix protein import.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available