4.6 Article

Neurotoxic, redox-competent Alzheimer's β-amyloid is released from lipid membrane by methionine oxidation

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 278, Issue 44, Pages 42959-42965

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M305494200

Keywords

-

Ask authors/readers for more resources

The amyloid beta peptide is toxic to neurons, and it is believed that this toxicity plays a central role in the progression of Alzheimer's disease. The mechanism of this toxicity is contentious. Here we report that an Abeta peptide with the sulfur atom of Met-35 oxidized to a sulfoxide (Met(O)Abeta) is toxic to neuronal cells, and this toxicity is attenuated by the metal chelator clioquinol and completely rescued by catalase implicating the same toxicity mechanism as reduced Abeta. However, unlike the unoxidized peptide, Met(O)Abeta is unable to penetrate lipid membranes to form ion channel-like structures, and beta-sheet formation is inhibited, phenomena that are central to some theories for Abeta toxicity. Our results show that, like the unoxidized peptide, Met(O)Abeta will coordinate Cu2+ and reduce the oxidation state of the metal and still produce H2O2. We hypothesize that Met(O)Abeta production contributes to the elevation of soluble Abeta seen in the brain in Alzheimer's disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available