4.7 Article

Serotonergic systems targeted by developmental exposure to chlorpyrifos: Effects during different critical periods

Journal

ENVIRONMENTAL HEALTH PERSPECTIVES
Volume 111, Issue 14, Pages 1736-1743

Publisher

US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE
DOI: 10.1289/ehp.6489

Keywords

adenylyl cyclase; brain development; chlorpyrifos; organophosphate insecticides; serotonin receptors; serotonin transporter

Funding

  1. NIEHS NIH HHS [ES10356, ES10387] Funding Source: Medline

Ask authors/readers for more resources

During brain development, serotonin (5HT) provides essential neurotrophic signals. In the present study, we evaluated whether the developmental neurotoxicity of chlorpyrifos (CPF) involves effects on 5HT signaling, as a potential mechanism underlying noncholinergic neuroteratogenic events. We evaluated four different treatment windows ranging from the neural tube stage [gestational days (GD) 9-12] and the late gestational period (GD17-20) through postnatal phases of terminal neuronal differentiation and synaptogenesis [postnatal days (PN) 1-4, PN11-14]. Exposure to CPF on GD9-12 elicited initial suppression, immediately followed by rebound elevation, of 5HT(1A) and 5HT(2) receptors as well as the 5HT transporter, all at doses below the threshold for cholinergic hyperstimulation and the resultant systemic toxicity. In contrast, with GD17-20 exposure, the initial effect was augmentation of all three components by low doses of CPF. Sensitivity of these effects declined substantially when exposure was shifted to the postnatal period. We also identified major alterations in 5HT-mediated responses, assessed for the adenylyl cyclase signaling cascade. Although GD9-12 exposure had only minor effects, treatment on GD17-20 elicited supersensitivity to both stimulatory and inhibitory responses mediated by 5HT. Our results indicate that CPF affects 5HT receptors, the presynaptic 5HT transporter, and 5HT-mediated signal transduction during a discrete critical gestational window. These effects are likely to contribute to the noncholinergic component of CPF's developmental neurotoxicity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available