4.7 Article

Conduction slowing by the gap junctional uncoupler carbenoxolone

Journal

CARDIOVASCULAR RESEARCH
Volume 60, Issue 2, Pages 288-297

Publisher

OXFORD UNIV PRESS
DOI: 10.1016/j.cardiores.2003.07.004

Keywords

experimental; heart; organism; cellular; electrophysiology; arrhythmias; antiarrhythmic agents; cellular communication; conduction; membrane potential

Ask authors/readers for more resources

Background: Cellular electrical coupling is essential for normal propagation of the cardiac action potential, whereas reduced electrical coupling is associated with arrhythrmas. Known cellular uncoupling agents have severe side effects on membrane ionic currents. We investigated the effect of carbenoxolone on cellular electrical coupling, membrane ionic currents, and atrial and ventricular conduction. Methods and Results: In isolated rabbit left ventricular and right atrial myocytes, carbenoxolone (50 mumol/l) had no effect on action potential characteristics. Calcium, potassium, and sodium currents remained unchanged. Dual current clamp experiments on poorly coupled cell pairs revealed a 21 +/- 3% decrease in coupling conductance by carbenoxolone (mean +/- S.E.M., n = 4, p < 0.05). High-density activation mapping was performed in intact rabbit atrium and ventricle during Langendorff perfusion of the heart. The amplitude of the Laplacian of the electrograms, a measure of coupling current in intact hearts, decreased from 1.45 +/- 0.66 to 0.75 +/- 0.51 muA/mm(3) (mean +/- SD, n = 32, p < 0.05) after 15 min of carbenoxolone. Carbenoxolone reversibly decreased longitudinal and transversal conduction velocity from 66 +/- 15 to 49 +/- 16 cm/s and from 50 +/- 14 to 35 +/- 15 cm/s in ventricle, respectively (mean SD, n = 5, both p < 0.05). In atrium, longitudinal and transversal conduction, velocity decreased from 80 +/- 29 to 60 +/-16 cm/s and from 49 +/- 10 to 38 +/- 10 cm/s (mean SD, n = 8, both p < 0.05). Conclusions: Carbenoxolone-induced uncoupling causes atrial and ventricular conduction slowing without affecting cardiac membrane currents. Activation delay is larger in poorly coupled cells. (C) 2003 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available