4.7 Article

Direct and adjoint sensitivity analysis of chemical kinetic systems with KPP: II - Numerical validation and applications

Journal

ATMOSPHERIC ENVIRONMENT
Volume 37, Issue 36, Pages 5097-5114

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.atmosenv.2003.08.020

Keywords

sensitivity analysis; data assimilation; parameter identification; optimization

Ask authors/readers for more resources

The Kinetic PreProcessor KPP was extended to generate the building blocks needed for the direct and adjoint sensitivity analysis of chemical kinetic systems. An overview of the theoretical aspects of sensitivity calculations and a discussion of the KPP software tools is presented in the companion paper. In this work the correctness and efficiency of the KPP generated code for direct and adjoint sensitivity studies are analyzed through an extensive set of numerical experiments. Direct-decoupled Rosenbrock methods are shown to be cost-effective for providing sensitivities at low and medium accuracies. A validation of the discrete-adjoint evaluated gradients is performed against the finite difference estimates. The accuracy of the adjoint gradients is measured using a reference gradient value obtained with a standard direct-decoupled method. The accuracy is studied for both constant step size and variable step size integration of the forward/adjoint model and the consistency between the discrete and continuous adjoint models is analyzed. Applications of the KPP-1.2 software package to direct and adjoint sensitivity studies, variational data assimilation, and parameter identification are considered for the comprehensive chemical mechanism SAPRC-99. (C) 2003 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available