4.7 Article

Functional evidence that ATP or a related purine is an inhibitory NANC neurotransmitter in the mouse jejunum: study on the identity of P2X and P2Y purinoceptors involved

Journal

BRITISH JOURNAL OF PHARMACOLOGY
Volume 140, Issue 6, Pages 1108-1116

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.bjp.0705536

Keywords

ATP; enteric nervous system; inhibitory neurotransmission; purinergic neurotransmission; P2X; P2Y

Ask authors/readers for more resources

1 Conflicting views exist on whether ATP is a neurotransmitter in the enteric nervous system. We investigated the role of ATP in enteric transmission in circular muscle strips of the mouse jejunum. 2 On PGF(2alpha)-precontracted muscle strips and in the presence of atropine and guanethidine, electrical field stimulation (EFS, 1-8 Hz) of nonadrenergic noncholinergic (NANC) nerves induced transient relaxations that were abolished by the nerve-conductance blocker tetrodotoxin. The NO synthase blocker L-nitroarginine (L-NOARG) partially inhibited the NANC relaxations to EFS, but fast-twitch relaxations to EFS were still observed in the presence Of L-NOARG. 3 In the presence of L-NOARG, ATP, the P2X receptor agonist alphabetaMeATP and the P2Y receptor agonist ADPbetaS relaxed jejunal muscle strips. Tetrodotoxin did not affect the relaxation to ATP and ADPbetaS, but inhibited that to alphabetaMeATP. 4 The L-NOARG-resistant NANC relaxations to EFS were almost abolished by apamin, a blocker of small-conductance Ca2+ activated K+ channels, and by suramin and PPADS, blockers of P2 purinoceptors. Relaxations to ATP were almost abolished by apamin and suramin but not affected by PPADS. 5 Desensitisation of alphabetaMeATP-sensitive P2X receptors, the P2X receptor blocker Evans blue and the P2X(1,2,3) receptor blocker NF 279 inhibited the L-NOARG-resistant NANC relaxations to EFS and that to alphabetaMeATP without affecting the relaxation to ADPbetaS. Brilliant blue G, a P2X(2,5,7) receptor blocker, did not affect the relaxations to EFS. 6 Desensitisation of P2Y receptors and MRS 2179, a P2Y, receptor blocker, virtually abolished the L-NOARG-resistant NANC relaxations to EFS and the relaxation to ADPbetaS without affecting the relaxation to alphabetaMeATP. 7 Dipyridamole, an adenosine uptake inhibitor, or theophylline and 8-phenyltheophylline, blockers of PI and A1 purinoceptors, respectively, did not affect the purinergic NANC relaxations to EFS. 8 Our results suggest that ATP or a related purine acts as an inhibitory NANC neurotransmitter in the mouse jejunum, activating P2 but not P1 purinoceptors. Relaxations to the purinergic NANC neurotransmitter mainly involve P2Y receptors of the P2Y(1) subtype that are located postjunctionally. Purinergic NANC neurotransmission also involves P2X receptors, most likely of the P2X(1) and P2X(3) subtype, located pre- and/or postjunctionally.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available