4.5 Article

A curvilinear tool-path method for pocket machining

Publisher

ASME
DOI: 10.1115/1.1596579

Keywords

-

Ask authors/readers for more resources

A novel curvilinear tool-path generation method is described for planar milling of pockets. The method uses the solution of an elliptic partial differential equation boundary value problem defined on a pocket region. This mathematical function helps morph a smooth low-curvature spiral path in a pocket interior to one that conforms to the pocket boundary. This morphing leads to substantial reductions of tool wear in cutting hard metals and of machining time in cutting all metals, as experiments described here show. A variable feed-rate optimization procedure is also described. This procedure incorporates path, tool-engagement, and machine constraints and can be applied to maximize machine performance for any toolpath.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available