4.7 Article

Red galaxy clustering in the NOAO Deep Wide-Field Survey

Journal

ASTROPHYSICAL JOURNAL
Volume 597, Issue 1, Pages 225-238

Publisher

UNIV CHICAGO PRESS
DOI: 10.1086/377332

Keywords

cosmology : observations; galaxies : elliptical and lenticular, cD; large-scale structure of universe

Ask authors/readers for more resources

We have measured the clustering of 0.30 < z < 0.90 red galaxies and constrained models of the evolution of large-scale structure using the initial 1.2 deg(2) data release of the NOAO Deep Wide-Field Survey (NDWFS). The area and BWRI passbands of the NDWFS allow samples of greater than or similar to 10(3) galaxies to be selected as a function of spectral type, absolute magnitude, and photometric redshift. Spectral synthesis models can be used to predict the colors and luminosities of a galaxy population as a function of redshift. We have used PEGASE2 models, with exponentially declining star formation rates, to estimate the observed colors and luminosity evolution of galaxies and to connect, as an evolutionary sequence, related populations of galaxies at different redshifts. A red galaxy sample, with present-day rest-frame Vega colors of B-W-R > 1.44, was chosen to allow comparisons with the 2dF Galaxy Redshift Survey and Sloan Digital Sky Survey. We find the spatial clustering of red galaxies to be a strong function of luminosity, with r(0) increasing from 4.4 +/- 0.4 h(-1) Mpc at M-R - 5 log h approximate to - 20.0 to 11.2 +/- 1.0 h(-1) Mpc at M-R - 5 log h approximate to - 22.0. Clustering evolution measurements using samples where the rest-frame selection criteria vary with redshift, including all deep single-band magnitude limited samples, are biased because of the correlation of clustering with rest-frame color and luminosity. The clustering of - 21.5 < M-R - 5 log h < - 20.5, B-W - R > 1.44 galaxies exhibits no significant evolution over the redshift range observed with r(0) = 6.3 +/- 0.5 h(-1) Mpc in comoving coordinates. This is consistent with recent LambdaCDM models in which the bias of L* galaxies undergoes rapid evolution and r0 evolves very slowly at z < 2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available