4.1 Article

Support vector machine with adaptive parameters in financial time series forecasting

Journal

IEEE TRANSACTIONS ON NEURAL NETWORKS
Volume 14, Issue 6, Pages 1506-1518

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNN.2003.820556

Keywords

back-propagation (BP) neural network; nonstationarity; regularized radial basis function (RBF) neural network; support vector machine (SVM)

Ask authors/readers for more resources

A novel type of learning machine called support vector machine (SVM) has been receiving increasing interest in areas ranging from its original application in pattern recognition to other applications such as regression estimation due to its remarkable generalization performance. This paper deals with the application of SVM in financial time series forecasting. The feasibility of applying SVM in financial forecasting is first examined by comparing it with the multilayer back-propagation (BP) neural network and the regularized radial basis function (RBF) neural network. The variability in performance of SVM with respect to the free parameters is investigated experimentally. Adaptive parameters are then proposed by incorporating the nonstationarity of financial time series into SVM. Five real futures contracts collated from the Chicago Mercantile Market are used as the data sets. The simulation shows that among the three methods, SVM outperforms the BP neural network in financial forecasting, and there are comparable generalization performance between SVM and the regularized RBF neural network. Furthermore, the free parameters of SVM have a great effect on the generalization performance. SVM with adaptive parameters can both achieve higher generalization performance and use fewer support vectors than the standard SVM in financial forecasting.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available