4.7 Article

Hydrolytic degradation of poly(lactide-co-glycolide) films: effect of oligomers on degradation rate and crystallinity

Journal

INTERNATIONAL JOURNAL OF PHARMACEUTICS
Volume 266, Issue 1-2, Pages 39-49

Publisher

ELSEVIER
DOI: 10.1016/S0378-5173(03)00379-X

Keywords

D,L-lactic acid oligomers; PLGA; blends; degradation; crystallinity

Ask authors/readers for more resources

Oligomers are thought to accelerate the hydrolytic degradation of devices prepared from poly(lactide-co-glycolide), PLGA, due to their increased number of carboxylic end groups. To experimentally verify this hypothesis, two D,L-lactic acid oligomers having molecular weights close to their critical limit of solubility were synthesized and incorporated into PLGA films in three concentrations (0, 10, and 30% w/w). All films were translucent, rather flexible and initially amorphous. With increasing oligomer concentration the glass transition temperature (T-g) and the molecular weight of films decreased prior to erosion. The degradation studies show that initial mass loss and water absorption are increased in oligomer-containing films as a function of average molecular weight and oligomer concentration. However, the incorporation of oligomers does not accelerate the degradation of films. By contrast, oligomer-containing films show extended lag phase until onset of polymer erosion. This was shown to be related to crystallization. Moreover, it was found that crystallization occurs earlier in oligomer-containing films and that the degree of crystallization is related to the average molecular weight of the oligomer. These findings bring new insight into the role of oligomers in the degradation process and can be used to explain why erosion in massive polymer devices occurs from the center to the surface. (C) 2003 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available