4.6 Article

Enhanced cell attachment and osteoblastic activity by P-15 peptide-coated matrix in hydrogels

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2003.09.192

Keywords

anorganic bone mineral; collagen; P-15 peptide; injectable hydrogel; cell attachment; osteogenic gene expression; mineralization; bone repair

Ask authors/readers for more resources

The cells in bone grow on a composite matrix made up of mineral and organic (mainly type-I collagen) components. In this study, anorganic bone mineral (ABM) particles were coated with a cell-binding domain of type-I collagen (P-15 peptide) to mimic the bone matrix components and suspended in injectable hyaluronate (Hy) hydrogels. The ABM/P-15/Hy was compared to ABM/Hy-the same matrix without P-15 peptide. Osteoblast-like HOS cells migrated through the hydrogels around ABM/P-15 or ABM particles; however, more cells adhered to ABM/P-15/Hy particles, and the cells formed better surface coverage and had more stress fibers on ABM/P-15/Hy. HOS cells cultured on ABM/P-15/Hy had increased osteogenic gene expression for alkaline phosphatase and bone morphogenetic proteins, and deposited more mineralized matrix. Studies with two different hydrogels (carboxymethylcellulose and sodium alginate) showed similar enhanced cell attachment and mineralization. The studies suggest that the ABM/P-15 in hydrogels can be used as an injectable biomimetic matrix to facilitate bone repair. (C) 2003 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available