4.7 Article

Why are dengue virus serotypes so distantly related? Enhancement and limiting serotype similarity between dengue virus strains

Journal

PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES
Volume 270, Issue 1530, Pages 2241-2247

Publisher

ROYAL SOC
DOI: 10.1098/rspb.2003.2440

Keywords

dengue virus; dengue haemorrhagic fever; enhancement; genetic distance; coexistence; epidemiology

Ask authors/readers for more resources

Dengue virus, the causative agent of dengue fever, has four major serotypes characterized by large genetic and immunological distances. We propose that the unusually large distances between the serotypes can be explained in the light of a process of antibody-dependent enhancement (ADE) leading to increased mortality. Antibody-dependent enhancement results from a new infection with a particular serotype in an individual with acquired immunity to a different serotype. Classical dengue fever causes negligible mortality, but ADE leads to the risk of developing the significantly more dangerous dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS). A mathematical model is presented that describes the epidemiological dynamics of two serotypes of a pathogen where there is the possibility of co-infection and reinfection by a different serotype, along with increased mortality as a result of enhancement. We show that if there is no or slightly increased mortality after reinfection (enhancement), serotypes with a small immunological distance can stably coexist. This suggests that a cloud of serotypes with minor serological differences will constitute the viral population. By contrast, if enhancement is sufficiently great, a substantial immunological distance is necessary for two serotypes to stably coexist in the population. Therefore, high mortality owing to enhancement leads to an evolutionarily stable viral community comprising a set of distantly separated serotypes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available