4.6 Article

A novel Mg2+-dependent O-methyltransferase in the phenylpropanoid metabolism of Mesembryanthemum crystallinum

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 278, Issue 45, Pages 43961-43972

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M304932200

Keywords

-

Ask authors/readers for more resources

Upon irradiation with elevated light intensities, the ice plant (Mesembryanthemum crystallinum) accumulates a complex pattern of methylated and glycosylated flavonol conjugates in the upper epidermal layer. Identification of a flavonol methylating activity, partial purification of the enzyme, and sequencing of the corresponding peptide fragments revealed a novel S-adenosyl-L-methionine-dependent O-methyltransferase that was specific for flavonoids and caffeoyl-CoA. Cloning and functional expression of the corresponding cDNA verified that the new methyltransferase is a multifunctional 26.6-kDa Mg2+-dependent enzyme, which shows a significant sequence similarity to the cluster of caffeoyl coenzyme A-methylating enzymes. Functional analysis of highly homologous members from chickweed (Stellaria longipes), Arabidopsis thaliana, and tobacco (Nicotiana tabacum) demonstrated that the enzymes from the ice plant, chickweed, and A. thaliana possess a broader substrate specificity toward o-hydroquinone-like structures than previously anticipated for Mg2+-dependent O-methyltransferases, and are distinctly different from the tobacco enzyme. Besides caffeoyl-CoA and flavonols, a high specificity was also observed for caffeoylglucose, a compound never before reported to be methylated by any plant O-methyltransferase. Based on phylogenetic analysis of the amino acid sequence and differences in acceptor specificities among both animal and plant O-methyltransferases, we propose that the enzymes from the Centrospermae, along with the predicted gene product from A. thaliana, form a novel subclass within the caffeoyl coenzyme A-dependent O-methyltransferases, with potential divergent functions not restricted to lignin monomer biosynthesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available