4.6 Article

Mismatch repair regulates homologous recombination, but has little influence on antigenic variation, in Trypanosoma brucei

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 278, Issue 46, Pages 45182-45188

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M308123200

Keywords

-

Ask authors/readers for more resources

Antigenic variation is critical in the life of the African trypanosome, as it allows the parasite to survive in the face of host immunity and enhance its transmission to other hosts. Much of trypanosome antigenic variation uses homologous recombination of variant surface glycoprotein (VSG)-encoding genes into specialized transcription sites, but little is known about the processes that regulate it. Here we describe the effects on VSG switching when two central mismatch repair genes, MSH2 and MLH1, are mutated. We show that disruption of the parasite mismatch repair system causes an increased frequency of homologous recombination, both between perfectly matched DNA molecules and between DNA molecules with divergent sequences. Mismatch repair therefore provides an important regulatory role in homologous recombination in this ancient eukaryote. Despite this, the mismatch repair system has no detectable role in regulating antigenic variation, meaning that VSG switching is either immune to mismatch selection or that mismatch repair acts in a subtle manner, undetectable by current assays.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available