4.5 Article

Control of embryonic Xenopus morphogenesis by a Ral-GDS/Xral branch of the Ras signalling pathway

Journal

JOURNAL OF CELL SCIENCE
Volume 116, Issue 22, Pages 4651-4662

Publisher

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jcs.00763

Keywords

FGF; Ras pathway; RalB; actin cytoskeleton; gastrulation; Xenopus laevis

Categories

Ask authors/readers for more resources

Ras proteins mediate biological responses through various effectors and play a key role in relaying the Fibroblast Growth Factor (FGF) mesoderm induction signal during embryogenesis of the frog, Xenopus laevis. One Ras effector pathway involves the activation of the small G protein Ral. In the present study, we have investigated the role of key components in the Ral branch of FGF and Ras signalling during early Xenopus development. Treatment of animal caps with bFGF, which converts prospective ectoderm to mesoderm, activates Xral. The Ras mutant 12V37G, which can bind to Ral-GDS but not Raf, also activates Xral as well as causing developmental defects and cortical F-actin disassembly. A similar phenotype is induced by Ral-GDS itself. FGF-induced expression of several signature mesodermal genes, by contrast, is independent of Xral signalling. This and other data suggest that the RalB branch of Ras and FGF signalling regulates the actin cytoskeleton and morphogenesis in a transcriptionally independent manner. We also find Xral to be specifically activated in the marginal zone of Xenopus embryos, and find that disruption of the Ral pathway in this region prevents closure of the blastopore during gastrulation. We conclude that Ral signalling is autonomously required by mesodermal cells to effect essential morphogenetic changes during Xenopus gastrulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available