4.5 Article

Structural and functional analyses of disease-causing missense mutations in the forkhead domain of FOXC1

Journal

HUMAN MOLECULAR GENETICS
Volume 12, Issue 22, Pages 2993-3005

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddg324

Keywords

-

Ask authors/readers for more resources

Five missense mutations (P79L, P79T, I91S, I91T and R127H) within the forkhead DNA-binding domain of the FOXC1 transcription factor, identified in patients with Axenfeld-Rieger (AR) malformations, were studied to identify the effects of these mutations on FOXC1 structure and function. Molecular modeling and threading analyses predict that the I91S and T mutations may generate local disruptions to the structure of the forkhead domain while the R127H mutation alters the electrostatic charge of the DNA binding surface of the forkhead domain. The P79L and T mutations are not predicted to grossly perturb the structure of the forkhead domain. Biological analyses indicate that all of these missense mutations cause a range of FOXC1 perturbations, including nuclear localization defects, reduced or abolished DNA binding capacity, and a reduction in the transactivation capacity of FOXC1. These experiments extend our previous hypothesis that reduced transactivation of appropriate target genes by FOXC1, underlie AR malformations mapping to human chromosome 6p25. Importantly, these results can also be applied to predict the consequences of the molecular effects of mutations of other FOX genes that have analogous missense mutations, including FOXP2, FOXE3 and FOXC2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available