4.3 Article

DNA-PK phosphorylation sites in XRCC4 are not required for survival after radiation or for V(D)J recombination

Journal

DNA REPAIR
Volume 2, Issue 11, Pages 1239-1252

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S1568-7864(03)00143-5

Keywords

nonhomologous end joining; phosphorylation; DNA double-strand break repair; V(D)J recombination; DNA-dependent protein kinase; XRCC4

Funding

  1. NIAID NIH HHS [AI42938, AI32600] Funding Source: Medline

Ask authors/readers for more resources

Nonhomologous end joining (NHEJ) is a major pathway for the repair of DNA double-strand breaks (DSBs) in higher eukaryotes. Several proteins, including the DNA-dependent protein kinase (DNA-PK), XRCC4 and DNA ligase IV, are required for nonhomologous end joining both in vitro and in vivo. Since XRCC4 is recruited to the DNA double-strand break with DNA-PK, and because the protein kinase activity of DNA-PK is required for its in vivo function, we reasoned that XRCC4 could be a potential physiological substrate of DNA-PK. Here, we have used mass spectrometry to map the DNA-PK phosphorylation sites in XRCC4. Two major phosphorylation sites (serines 260 and 318), as well as several minor sites were identified. All of the identified sites lie within the carboxy-terminal 100 amino acids of XRCC4. Substitution of each of these sites to alanine (in combination) reduced the ability of DNA-PK to phosphorylate XRCC4 in vitro. by at least two orders of magnitude. However, XRCC4-deficient cells that were complemented with XRCC4 lacking DNA-PK phosphorylation sites were analogous to wild type XRCC4 with respect to survival after ionizing radiation and ability to repair DSBs introduced during V(D)J recombination. (C) 2003 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available