4.7 Article

The 2dF Galaxy Redshift Survey: correlation functions, peculiar velocities and the matter density of the Universe

Journal

Publisher

OXFORD UNIV PRESS
DOI: 10.1046/j.1365-2966.2003.07063.x

Keywords

surveys; galaxies : distances and redshifts; galaxies : statistics; cosmological parameters; large-scale structure of Universe

Ask authors/readers for more resources

We present a detailed analysis of the two-point correlation function, xi(sigma, pi), from the 2dF Galaxy Redshift Survey (2dFGRS). The large size of the catalogue, which contains similar to220 000 redshifts, allows us to make high-precision measurements of various properties of the galaxy clustering pattern. The effective redshift at which our estimates are made is z(s) approximate to 0.15, and similarly the effective luminosity, L-s approximate to 1.4L*. We estimate the redshift-space correlation function, xi(s), from which we measure the redshift-space clustering length, s(o) = 6.82 +/- 0.28 h(-1) Mpc. We also estimate the projected correlation function, Xi(sigma), and the real-space correlation function, xi(r), which can be fit by a power law (r/r(o))(-gamma), with r(o) = 5.05 +/- 0.26 h(-1) Mpc, gamma(r) = 1.67 +/- 0.03. For r greater than or similar to 20 h(-1) Mpc, xi drops below a power law as, for instance, is expected in the popular Lambda cold dark matter model. The ratio of amplitudes of the real- and redshift-space correlation functions on scales of 8-30 h(-1) Mpc gives an estimate of the redshift-space distortion parameter beta. The quadrupole moment of xi(sigma, pi) on scales 30-40 h(-1) Mpc provides another estimate of beta. We also estimate the distribution function of pairwise peculiar velocities, f (nu), including rigorously the significant effect due to the infall velocities, and we find that the distribution is well fit by an exponential form. The accuracy of our xi(sigma, pi) measurement is sufficient to constrain a model, which simultaneously fits the shape and amplitude of xi(r) and the two redshift-space distortion effects parametrized by beta and velocity dispersion, a. We find beta = 0.49 +/- 0.09 and a = 506 +/- 52 km s(-1), although the best-fitting values are strongly correlated. We measure the variation of the peculiar velocity dispersion with projected separation, a(or), and find that the shape is consistent with models and simulations. This is the first time that beta and f (v) have been estimated from a self-consistent model of galaxy velocities. Using the constraints on bias from recent estimates, and taking account of redshift evolution, we conclude that beta(L = L*, z = 0) = 0.47 +/- 0.08, and that the present-day matter density of the Universe, Omega(m) approximate to 0.3, consistent with other 2dFGRS estimates and independent analyses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available