4.6 Article

The modifier subunit of Drosophila glutamate-cysteine ligase regulates catalytic activity by covalent and noncovalent interactions and influences glutathione homeostasis in vivo

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 278, Issue 47, Pages 46369-46377

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M308035200

Keywords

-

Ask authors/readers for more resources

Glutamate-cysteine ligase (GCL) has a key influence on glutathione homeostasis. It has been proposed that mammalian GCL is regulated by the redox environment, and we show here that cysteine residues in the Drosophila melanogaster GCL modifier subunit (DmGCLM) can form covalent interactions with the catalytic subunit (DmGCLC) and modify its activity. Candidate components of intersubunit disulfides (Cys(213), Cys(214), and Cys(267)) were identified using matrix-assisted laser desorption ionization time-of-flight spectroscopy of iodoacetamide-modified DmGCLM as well as examination of the evolutionary conservation of cysteines. Mutation of the 3 cysteine residues allowed DmGCLM to associate with DmGCLC, but inhibited the formation of intersubunit disulfides. This caused a 2-fold reduction in the catalytic efficiency of Drosophila GCL, although activity remained significantly higher than the catalytic subunit alone. The cysteine mutant was also more sensitive to inhibition by glutathione than the unmodified holoenzyme. Notably, human GCLM could substitute for DmGCLM in modification of DmGCLC activity. The role of DmGCLM in vivo was examined by analysis of a Drosophila mutant (l(3)L0580) containing a P-element insertion in Gclm. We found that the P-element is not responsible for the lethal phenotype and separated the recessive lethal mutation from the P-element by recombination. This yielded two fully viable and fertile recombinants bearing the P-element insertion, which Western and Northern blotting indicated is a severely hypomorphic allele of Gclm. Glutathione levels were similar to2-fold lower in the Gclm(L0580) mutants than in control strains, demonstrating the importance of DmGCLM in the regulation of glutathione homeostasis in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available