4.6 Article

Structural characterization and kinetics of nitric-oxide synthase inhibition by novel N5-(iminoalkyl)- and N5-(iminoalkenyl)-ornithines

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 278, Issue 47, Pages 46789-46797

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M306787200

Keywords

-

Funding

  1. NIDDK NIH HHS [DK 48423] Funding Source: Medline
  2. NIGMS NIH HHS [GM 57353] Funding Source: Medline

Ask authors/readers for more resources

Isoform-specific nitric-oxide synthase (NOS) inhibitors may prove clinically useful in reducing the pathophysiological effects associated with increased neuronal NOS ( nNOS) or inducible NOS (iNOS) activity in a variety of neurological and inflammatory disorders. Analogs of the NOS substrate L-arginine are pharmacologically attractive inhibitors because of their stability, reliable cell uptake, and good selectivity for NOS over other heme proteins. Some inhibitory arginine analogs show significant isoform selectivity although the structural or mechanistic basis of such selectivity is generally poorly understood. In the present studies, we determined by x-ray crystallography the binding interactions between rat nNOS and N-5-(1-imino-3-butenyl)-L-ornithine (L-VNIO), a previously identified mechanism-based, irreversible inactivator with moderate nNOS selectivity. We have also synthesized and mechanistically characterized several L-VNIO analogs and find, surprisingly, that even relatively minor structural changes produce inhibitors that are either iNOS-selective or nonselective. Furthermore, derivatives having a methyl group added to the butenyl moiety of L-VNIO and L-VNIO derivatives that are analogs of homoarginine rather than arginine display slow-on, slow-off kinetics rather than irreversible inactivation. These results elucidate some of the structural requirements for isoform-selective inhibition by L-VNIO and its related alkyl- and alkenylimino ornithine and lysine derivatives and may provide information useful in the ongoing rational design of isoform-selective inhibitors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available