4.6 Article

Ion beam-induced anisotropic plastic deformation at 300 keV

Journal

APPLIED PHYSICS LETTERS
Volume 83, Issue 21, Pages 4315-4317

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1629793

Keywords

-

Ask authors/readers for more resources

Contrary to earlier predictions, ion irradiation at energies as low as 300 keV causes dramatic anisotropic plastic deformation of silica glass. Spherical colloidal silica particles with diameters of 125, 305, and 1030 nm were irradiated with Xe ions at energies in the range 0.3-4.0 MeV at temperatures between 85 and 380 K. Irradiation-induced anisotropic plastic deformation changes the colloid shape from spherical into oblate ellipsoidal at a rate that strongly increases with ion energy. At a fixed fluence, the transverse diameter increases with electronic energy loss. Even at an energy as low as 300 keV large particle anisotropy was found (size aspect ratio of 1.43 at 1x10(15) cm(-2)). The transverse plastic strain gradually decreases with increasing irradiation temperature: it decreases by a factor 4.5 between 85 and 380 K. The data are in agreement with a viscoelastic thermal spike model for anisotropic deformation. (C) 2003 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available