4.8 Article

Constitutive DNA damage is linked to DNA replication abnormalities in Bloom's syndrome cells

Journal

ONCOGENE
Volume 22, Issue 54, Pages 8749-8757

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.onc.1206970

Keywords

Bloom's syndrome; DNA damage; double-strand break repair; timing of replication

Ask authors/readers for more resources

Bloom's syndrome (BS) is an autosomal recessive disorder associated with an elevated incidence of cancers. The gene mutated in BS, BLM, encodes a RecQ helicase family member. BS cells exhibit genomic instability, including excessive homologous recombination and chromosomal aberrations. W e reported previously that BS cells also demonstrate increased error-prone nonhomologous end-joining, which could contribute to genomic instability in these cells. Here, we show that BS cells display an abnormality in the timing of replication of both early-replicating genes and late-replicating loci such as chromosomal fragile sites. This delayed replication is associated with a constitutively increased frequency of sites of DNA damage and repair, as determined by the presence of DNA repair factors such as RAD51 and Ku86. In addition, another RecQ family helicase, WRN, also localizes to these repair sites. The presence of these repair sites correlates with the temporal appearance of cyclin B1 expression, indicative of the cells having progressed beyond mid-S phase in the cell division cycle. Critically, these defects in BS cells are the direct result of loss of BLM function, because BS cells phenotypically 'reverted' following transfection with the BLM cDNA no longer show such defects. Thus, our data indicate that constitutive DNA damage is coupled to delayed DNA replication in BS cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available