4.7 Article

A revised parameterization for gaseous dry deposition in air-quality models

Journal

ATMOSPHERIC CHEMISTRY AND PHYSICS
Volume 3, Issue -, Pages 2067-2082

Publisher

EUROPEAN GEOPHYSICAL SOC
DOI: 10.5194/acp-3-2067-2003

Keywords

-

Ask authors/readers for more resources

A parameterization scheme for calculating gaseous dry deposition velocities in air-quality models is revised based on recent study results on non-stomatal uptake of O-3 and SO2 over 5 different vegetation types. Non-stomatal resistance, which includes in-canopy aerodynamic, soil and cuticle resistances, for SO2 and O-3 is parameterized as a function of friction velocity, relative humidity, leaf area index, and canopy wetness. Non-stomatal resistance for other chemical species is scaled to those of SO2 and O-3 based on their chemical and physical characteristics. Stomatal resistance is calculated using a two-big-leaf stomatal resistance sub-model for all gaseous species of interest. The improvements in the present model compared to its earlier version include a newly developed non-stomatal resistance formulation, a realistic treatment of cuticle and ground resistance in winter, and the handling of seasonally-dependent input parameters. Model evaluation shows that the revised parameterization can provide more realistic deposition velocities for both O-3 and SO2, especially for wet canopies. Example model output shows that the parameterization provides reasonable estimates of dry deposition velocities for different gaseous species, land types and diurnal and seasonal variations. Maximum deposition velocities from model output are close to reported measurement values for different land types. The current parameterization can be easily adopted into different air-quality models that require inclusion of dry deposition processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available