4.6 Review

RNA interference: Biology, mechanism, and applications

Journal

MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS
Volume 67, Issue 4, Pages 657-+

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MMBR.67.4.657-685.2003

Keywords

-

Categories

Ask authors/readers for more resources

RNA silencing is a novel gene regulatory mechanism that limits the transcript level by either suppressing transcription (transcriptional gene silencing [TGS]) or by activating a sequence-specific RNA degradation process (posttranscriptional gene silencing [PTGS]/RNA interference [RNAi]). Although there is a mechanistic connection between TGS and PTGS, TGS is an emerging field while PTGS is undergoing an explosion in its information content. Here, we have limited our discussion to PTGS/RNAi-related phenomena. Pioneering observations on PTGS/RNAi were reported in plants, but later on RNAi-related events were described in almost all eukaryotic organisms, including protozoa, flies, nematodes, insects, parasites, and mouse and human cell lines, as shown in Table 1. Three phenotypically different but mechanistically similar forms of RNAi, cosuppression or PTGS in plants, quelling in fungi, and RNAi in the animal kingdom, have been described. More recently, micro-RNA formation, heterochromatinization, etc., have been revealed as other facets of naturally occurring RNAi processes of eukaryotic cells. During the occurrence of RNAi/PTGS, double-stranded RNA (dsRNA) molecules, which cleave the inducer molecules into smaller pieces first (16) and eventually destroy the cellular or viral cognate mRNA molecules (called the target) (17) act as inducers or activators of this process. As a result, the target mRNAs cannot accumulate in the cytosol, although they remain detectable by nuclear run-on assays (73). In certain instances, the DNA expressing the target mRNA also undergoes methylation as a by-product of the degradation process (226). The natural functions of RNAi and its related processes seem to be protection of the genome against invasion by mobile genetic elements such as viruses and transposons as well as orchestrated functioning of the developmental programs of eukaryotic organisms. There are several excellent recent reviews which deal with different aspects of RNAi separately (95, 191). Here, we have put together the various aspects of the RNAi process known to date, identified the mechanistic similarities and differences operating in various forms of eukaryotic life, and focused on the experimental results that have led to conceptual advancements in this field.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available