4.7 Article

Dynamics and control of redundantly actuated parallel manipulators

Journal

IEEE-ASME TRANSACTIONS ON MECHATRONICS
Volume 8, Issue 4, Pages 483-491

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMECH.2003.820006

Keywords

control; D'Alembert formulation; dynamics; paratlel manipulator; redundant actuation; singularities

Ask authors/readers for more resources

It has been shown that redundant actuation provides an effective means for eliminating singularities of a parallel manipulator, thereby improving its performance such as Cartesian stiffness and homogeneous output forces. Based on this concept, several high-performance parallel manipulator prototypes have been designed. A major difficulty that prevents application of the vast control literature. developed for the serial counterparts to redundantly actuated parallel manipulators is the lack of an efficient dynamical model for real-time control. In this paper, using the Lagrange-D'Alembert formulation, we propose a simple scheme for computing the inverse dynamics of a redundantly actuated parallel manipulator. Based on this approach, four basic control algorithms, a joint-space proportional derivative (PD) control, a PD control in generalized coordinates, an augmented PD control, and a computed-torque control, are formulated. A two-degrees-of-freedom redundantly acutated parallel manipulator designed for a high-speed assembly task is used to verify the simplicity of the proposed approach and to evaluate the performance of the four control algorithms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available