4.4 Article

Legume symbiotic nitrogen fixation by β-proteobacteria is widespread in nature

Journal

JOURNAL OF BACTERIOLOGY
Volume 185, Issue 24, Pages 7266-7272

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.185.24.7266-7272.2003

Keywords

-

Categories

Ask authors/readers for more resources

Following the initial discovery of two legume-nodulating Burkholderia strains (L. Moulin, A. Munive, B. Dreyfus, and C. Boivin-Masson, Nature 411:948-950, 2001), we identified as nitrogen-fixing legume symbionts at least 50 different strains of Burkholderia caribensis and Ralstonia taiwanensis, all belonging to the beta-subclass of proteobacteria, thus extending the phylogenetic diversity of the rhizobia. R. taiwanensis was found to represent 93% of the Mimosa isolates in Taiwan, indicating that beta-proteobacteria can be the specific symbionts of a legume. The nod genes of rhizobial beta-proteobacteria (beta-rhizobia) are very similar to those of rhizobia from the alpha-subclass (alpha-rhizobia), strongly supporting the hypothesis of the unique origin of common nod genes. The beta-rhizobial nod genes are located on a 0.5-Mb plasmid, together with the nifH gene, in R. taiwanensis and Burkholderia phymatum. Phylogenetic analysis of available nodA gene sequences clustered beta-rhizobial sequences in two nodA lineages intertwined with alpha-rhizobial sequences. On the other hand, the beta-rhizobia were grouped with free-living nitrogen-fixing beta-proteobacteria on the basis of the nifH phylogenetic tree. These findings suggest that beta-rhizobia evolved from diazotrophs through multiple lateral nod gene transfers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available