4.4 Article Proceedings Paper

Real-time MR artifacts filtering during continuous EEG/fMRI acquisition

Journal

MAGNETIC RESONANCE IMAGING
Volume 21, Issue 10, Pages 1175-1189

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.mri.2003.08.019

Keywords

functional MRI; electroencephalograph (EEG); real-time filtering

Ask authors/readers for more resources

The purpose of this study was the development of a real-time filtering procedure of MRI artifacts in order to monitor the EEG activity during continuous EEG/fMRI acquisition. The development of a combined EEG and fMRI technique has increased in the past few years. Preliminary spike-triggered applications have been possible because in this method, EEG knowledge was only necessary to identify a trigger signal to start a delayed fMRI acquisition. In this way, the two methods were used together but in an interleaved manner. In real simultaneous applications, like event-related fMRI study, artifacts induced by MRI events on EEG traces represent a substantial obstacle for a right analysis. Up until now, the methods proposed to solve this problem are mainly based on procedures to remove post-processing artifacts without the possibility to control electrophysiological behavior of the patient during fMRI scan. Moreover, these methods are not characterized by a strong prior knowledge of the artifact, which is an imperative condition to avoid any loss of information on the physiological signals recovered after filtering. In this work, we present a new method to perform simultaneous EEG/fMRI study with real-time artifacts filtering characterized by a procedure based on a preliminary analytical study of EPI sequence parameters-related EEG-artifact shapes. Standard EEG equipment was modified in order to work properly during ultra-fast MRI acquisitions. Changes included: high-performance acquisition device; electrodes/cap/wires/cables materials and geometric design; shielding box for EEG signal receiver; optical fiber link; and software. The effects of the RF pulse and time-varying magnetic fields were minimized by using a correct head cap wires-locked environment montage and then removed during EEG/fMRI acquisition with a subtraction algorithm that takes in account the most significant EPI sequence parameters. The on-line method also allows a further post-processing utilization. (C) 2003 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available