4.5 Article

Effect of queen quality on interactions between workers and dueling queens in honeybee (Apis mellifera L.) colonies

Journal

BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY
Volume 55, Issue 2, Pages 190-196

Publisher

SPRINGER
DOI: 10.1007/s00265-003-0708-y

Keywords

honeybees; queen duels; worker-queen interactions; quality selection

Ask authors/readers for more resources

The fitness of a social insect colony depends greatly on the quality (i.e., mating ability, fecundity, and offspring viability) of its queen(s). In honeybees, there is marked variation in the quality of young queens that compete in a series of lethal duels to replace a colony's previous queen. Workers interact with queens during these duels and could increase their inclusive fitness by biasing the outcomes of the duels in favor of high-quality queens. We predicted that workers will have more antagonistic interactions (chasing, grabbing, clamping) and fewer beneficent interactions (feeding, grooming) with low-quality than high-quality queens. To test this prediction, we reared queens from 0-day-old, 2-day-old, and 3-day-old worker larvae in observation colonies undergoing queen replacement, thus producing high-quality, low-quality, and very low-quality queens, respectively. Immediately after each queen emerged, we observed her for 1 h to record her interactions with the workers. Subsequent morphological measurement of the queens confirmed that initial larval age had a significant effect on queen quality. However, there was no consistent effect of queen quality on the rates of worker-queen interactions, thus falsifying our hypothesis. The mean power of our tests was high (0.599), therefore the probability of a type II error (a false negative) is low. We conclude that if workers actively select high-quality queens, then they do so prior to queen duels, during queen development. We suggest that each worker-queen interaction has a distinct adaptive significance rather than forming a suite of behavior that favors particular queens (e.g., chasing repels any queen that approaches a queen cell, thus protecting all queen cells from destruction).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available