4.3 Article

Candidate gene association analysis for a quantitative trait, using parent-offspring trios

Journal

GENETIC EPIDEMIOLOGY
Volume 25, Issue 4, Pages 327-338

Publisher

WILEY
DOI: 10.1002/gepi.10262

Keywords

quantitative TDT; sample size; gene-environment interaction

Funding

  1. NIEHS NIH HHS [ES10421, 5P30-ES07048] Funding Source: Medline

Ask authors/readers for more resources

With the increasing availability of genetic data, many studies of quantitative traits focus on hypotheses related to candidate genes, and also gene-environment (G x E) and gene-gene (G x G) interactions. In a population-based sample, estimates and tests of candidate gene effects can be biased by ethnic confounding, also known as population stratification bias. This paper demonstrates that even a modest degree of ethnic confounding can lead to unacceptably high type I error rates for tests of genetic effects. The parent-offspring trio design is reviewed, and several forms of the quantitative transmission disequilibrium test (QTDT) are summarized. A variation of the QTDT (QTDT(M)) is described that is based on a linear regression model with multiple intercepts, one per parental mating type. This and other models are expanded to allow testing of G x E and G x G interactions. A method for computing required sample sizes using direct computations is described. Sample size requirements for tests of genetic main effects and G x E and G x G interactions are compared across various QTDT approaches to infer their efficiencies relative to one another. The QTDT(M) is found to meet or exceed the efficiency of other QTDT approaches. For example, the QTDT(M) is approximately 3% more efficient than the QTDT of Rabinowitz ([1997] Hum. Hered. 47:342-350) for testing a genetic main effect, but can be as much as twice as efficient for testing G x E interaction, and three times more efficient for testing G x G interaction. (C) 2003 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available