4.5 Article Proceedings Paper

Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes

Journal

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
Volume 67A, Issue 3, Pages 813-827

Publisher

WILEY
DOI: 10.1002/jbm.a.10148

Keywords

biodegradable polyurethanes; porous structures; hydrophilicity; in vitro degradation; calcification; bone substitutes

Ask authors/readers for more resources

Autogenous cancellous bone graft is used to heal critical-size segmental long bone defects and defects in the maxillofacial skeleton. Harvesting of bone graft is traumatic, causes morbidity of the donor site, and often results in complications. Thus, there is a need for new biologically functional bone graft substitutes that, instead of autogenous bone graft, could be used to facilitate bone regeneration in critical-size defects. Porous biodegradable elastomeric polyurethane scaffolds combined with the patient's own bone marrow could potentially be such bone substitutes. The elastomeric bone substitute prevents shear forces at the interface between bone and rigid, e.g., ceramic bone substitutes and establishes an intimate contact with the native bone ends, thus facilitating the proliferation of osteogenic cells and bone regeneration. Crosslinked 3D biodegradable polyurethane scaffolds (foams) with controlled hydrophilicity for bone graft substitutes were synthesized from biocompatible reactants. The scaffolds had hydrophilic-to-hydrophobic content ratios of 70:30, 50:50, and 30:70. The reactants used were hexamethylene diisocyanate, poly(ethylene oxide) diol (M-W = 600) (hydrophilic component), and poly(epsilon-caprolactone) diol (M-W = 2000), amine-based polyol (M-W = 515) or sucrose-based polyol (M-W = 445) (hydrophobic component), water as the chain extender and foaming agent, and stannous octoate, dibutyltin dilaurate, ferric acetylacetonate, and zinc octoate as catalysts. Citric acid was used as a calcium complexing agent, calcium carbonate, glycerol phosphate calcium salt, and hydroxyapatite were used as inorganic fillers, and lecithin or solutions of vitamin D, were used as surfactants. The scaffolds had an open-pore structure with pores whose size and geometry depended on the material's chemical composition. The compressive strengths of the scaffolds were in the range of 4-340 kPa and the compressive moduli in the range of 9-1960 kPa, the values of which increased with increasing content of polycaprolactone. Of the two materials with the same amount of polycaprolactone the compressive strengths and moduli were higher for the one containing inorganic fillers. The scaffolds absorbed water and underwent controlled degradation in vitro. The amount of absorbed water and susceptibility to degradation increased with the increasing content of the polyethylene oxide segment in the polymer chain and the presence in the material of calcium complexing moiety. All polyurethane scaffolds induced the deposition of calcium phosphate crystals, the structure and calcium:phosphorus atomic ratio of which depended on the chemical composition of the polyurethane and varied from 1.52-2.0. (C) 2003 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available