4.6 Article

Apoptotic cascade initiated by angiotensin II in neonatal cardiomyocytes: role of DNA damage

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00408.2003

Keywords

NADPH oxidase; peroxynitrite; p53; Bax; Bcl-2; mitochondrial DNA; inducible nitric oxide synthase

Funding

  1. NHLBI NIH HHS [HL-63723] Funding Source: Medline

Ask authors/readers for more resources

Angiotensin II contributes to ventricular remodeling by promoting both cardiac hypertrophy and apoptosis; however, the mechanism underlying the latter phenomenon is poorly understood. One possibility that has been advanced is that angiotensin II activates NADPH oxidase, generating free radicals that trigger apoptosis. In apparent support of this notion, it was found that angiotensin II-mediated apoptosis in the cardiomyocyte is blocked by the NADPH oxidase inhibitor diphenylene iodonium. However, three lines of evidence suggest that peroxynitrite, rather than superoxide, is responsible for angiotensin II-mediated DNA damage and apoptosis. First, the inducible nitric oxide inhibitor aminoguanidine prevents angiotensin II-induced DNA damage and apoptosis. Second, based on ligation-mediated PCR, the pattern of angiotensin II-induced DNA damage resembles peroxynitrite-mediated damage rather than damage caused by either superoxide or nitric oxide. Third, angiotensin II activates p53 through the phosphorylation of Ser15 and Ser20, residues that are commonly phosphorylated in response to DNA damage. It is proposed that angiotensin II promotes the oxidation of DNA, which in turn activates p53 to mediate apoptosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available