4.8 Article

Colonic polyposis caused by mTOR-mediated chromosomal instability in Apc+/Δ716 Cdx2+/- compound mutant mice

Journal

NATURE GENETICS
Volume 35, Issue 4, Pages 323-330

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ng1265

Keywords

-

Ask authors/readers for more resources

The mammalian homeobox transcription factor CDX2 has key roles in intestinal development and differentiation. Heterozygous Cdx2 mice develop one or two benign hamartomas in the proximal colon, whereas heterozygous Apc(Delta716) mice develop numerous adenomatous polyps, mostly in the small intestine. Here we show that the colonic polyp number is about six times higher in Apc(+/Delta716) Cdx2(+/-) compound mutant mice. Levels of both APC and CDX2 were significantly lower in the distal colon, which caused high anaphase bridge index (ABI) associated with a higher frequency of loss of heterozygosity (LOH) at Apc. In cultured rat intestinal epithelial and human colon cancer cell lines, suppression of CDX2 by antisense RNA caused marked increases in ABI and chromosomal aberrations. This was mediated by stimulation of the mTOR pathway, causing translational deregulation and G(1)-S acceleration, associated with low levels of p27 and activation of cyclin E-Cdk2. We obtained similar results in the colonic mucosa of Apc(+/Delta716) Cdx2(+/-) compound mutant mice. Forced activation of mTOR through upstream regulator Akt also increased ABI in colon cancer cells. High ABI in all cell lines was suppressed by mTOR inhibitors LY294002 and rapamycin. These results suggest that reduced expression of CDX2 is important in colon tumorigenesis through mTOR-mediated chromosomal instability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available