4.6 Article

Solid-state NMR study of ion-exchange processes in V2O5 xerogel, polyaniline/V2O5, and sulfonated polyaniline/V2O5 nanocomposites

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 150, Issue 12, Pages A1718-A1722

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1.1624841

Keywords

-

Ask authors/readers for more resources

The local lithium environment in electrochemically lithiated V2O5 xerogel, polyaniline/V2O5, and sulfonated polyaniline/V2O5 nanocomposites is probed with solid-state Li-7 static and magic angle spinning (MAS) nuclear magnetic resonance (NMR). The line width from the static NMR spectra reveals differences between the lithium environments in the three materials. The MAS NMR spectrum of the V2O5 parent material in its unreduced (as-prepared) state shows the presence of an intrinsic ion-exchange site that can be populated with Li+ by simple exposure to LiClO4 in propylene carbonate (PC). Following electrochemical lithiation, both ion-exchange and intercalated lithium sites are observed. After lithiation, Li+ ions at the ion-exchange site can be displaced by exposure to NaClO4 in PC via a simple ion-exchange process. Both the ion-exchange and intercalated sites are observed for a sulfonated polyaniline/V2O5 nanocomposite while the polyaniline/V2O5 nanocomposite response is dominated by the intercalated lithium site. The results show that charge compensation of the intrinsic negatively charged ion-exchange sites in the V2O5 xerogel by conducting polymers used to form the nanocomposites is important in determining the number and type of Li+ sites available. (C) 2003 The Electrochemical Society.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available