4.8 Article

Isolation of AtSUC2 promoter-GFP-marked companion cells for patch-clamp studies and expression profiling

Journal

PLANT JOURNAL
Volume 36, Issue 6, Pages 931-945

Publisher

WILEY
DOI: 10.1046/j.1365-313X.2003.01931.x

Keywords

Arabidopsis thaliana; phloem; companion cells; EST library; potassium channels; laser microdissection

Categories

Ask authors/readers for more resources

K+ channels control K+ homeostasis and the membrane potential in the sieve element/companion cell complexes. K+ channels from Arabidopsis phloem cells expressing green fluorescent protein (GFP) under the control of the AtSUC2 promoter were analysed using the patch-clamp technique and quantitative RT-PCR. Single green fluorescent protoplasts were selected after being isolated enzymatically from vascular strands of rosette leaves. Companion cell protoplasts, which could be recognized by their nucleus, vacuole and chloroplasts, and by their expression of the phloem-specific marker genes SUC2 and AHA3, formed the basis for a cell-specific cDNA library and expressed sequence tag (EST) collection. Although we used primers for all members of the Shaker K+ channel family, we identified only AKT2, KAT1 and KCO6 transcripts. In addition, we also detected transcripts for AtPP2CA, a protein phosphatase, that interacts with AKT2/3. In line with the presence of the K+ channel transcripts, patch-clamp experiments identified distinct K+ channel types. Time-dependent inward rectifying K+ currents were activated upon hyperpolarization and were characterized by a pronounced Ca2+-sensitivity and inhibition by protons. Whole-cell inward currents were carried by single K+-selective channels with a unitary conductance of approximately 4 pS. Outward rectifying K+ channels (approximately 19 pS), with sigmoidal activation kinetics, were elicited upon depolarization. These two dominant phloem K+ channel types provide a versatile mechanism to mediate K+ fluxes required for phloem action and potassium cycling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available