3.8 Article

Anaerobic treatment of high sulfate wastewater with oxygenation to control sulfide toxicity

Journal

JOURNAL OF ENVIRONMENTAL ENGINEERING-ASCE
Volume 129, Issue 12, Pages 1104-1111

Publisher

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)0733-9372(2003)129:12(1104)

Keywords

anaerobic processes; sulfates; wastewater treatment; oxygenation; anaerobic filters

Ask authors/readers for more resources

In this study, oxidation-reduction potential (ORP) was employed to regulate oxygen dosing for online sulfide toxicity control during anaerobic treatment of high sulfate wastewater. The experiment was conducted in an upflow anaerobic filter, which was operated at a constant influent total organic carbon of 6,740 mg/L [equivalent to a chemical oxygen demand (COD) of 18,000 mg/L], but with different influent sulfates of 1,000, 3,000, and 6,000 mg/L. The reactor was initially run at natural ORP (the system's ORP without oxygenation) of about -290 to -300 mV and then was. followed by oxygenation to raise ORP by +25 mV above the natural level for each influent sulfate level. At 6,000 mg/L sulfate under the natural ORP, methanogenesis was severely inhibited due to sulfide toxicity, and the anaerobic process was almost totally upset. Upon oxygenation by raising ORP to -265 mV, the dissolved sulfide was quickly reduced to 12.2 mg S/L with a concomitant improvement in methane yield by 45.9%. If oxygen was not totally used up by sulfide oxidation, the excess oxygen was consumed by facultative bacteria which had been found to stabilize about 13.5% of the influent COD. Both sulfide oxidation and facultative activity acted as a shield to protect the anaerobes from an excessive oxygen exposure. This study showed that direct oxygenation of the recirculated biogas was effective to oxidize sulfide, and the use of ORP to regulate the oxygen dosing was practical and reliable during anaerobic treatment of high sulfate wastewater.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available