4.4 Article

Novel IRF6 mutations in Japanese patients with Van der Woude Syndrome: two missense mutations (R45Q and P396S) and a 17-kb deletion

Journal

JOURNAL OF HUMAN GENETICS
Volume 48, Issue 12, Pages 622-628

Publisher

SPRINGER-VERLAG TOKYO
DOI: 10.1007/s10038-003-0089-0

Keywords

Van der Woude syndrome (VWS); interferon regulatory factor 6 (IRF6); missense mutation; large deletion; multiplex PCR; long distance PCR

Ask authors/readers for more resources

Three Japanese families with Van der Woude syndrome (VWS) were screened for mutations in the interferon regulatory factor 6 gene (IRF6) by sequencing its entire coding region. Two novel missense mutations, R45Q in exon 3 and P396S in exon 9, were identified in families 1 and 2, respectively. In family 3, no causative base change was found by the sequencing analysis, but a deletion involving exons 4-9 was suggested by multiplex PCR analysis. To confirm the deletion and to determine its 5'- and 3'-boundaries, we amplified a DNA fragment containing a heterozygous polymorphic site in exon 2 by using a 5'-upstream forward PCR primer and eight different reverse primers located 3'-downstream of exon 2. The amplified product was subjected to nested PCR to generate a DNA fragment containing the polymorphic site. When a reverse primer located within the deletion was used for the first PCR amplification, only the nondeletion allele was detected after the second PCR. Repeated analyses with eight different reverse primers allowed us to map the boundaries of the deletion, and subsequently a heterozygous 17,162-bp deletion involving exons 4-9 was identified. Since IRF6 mutations in a significant portion of VWS patients remain undetected by conventional sequencing analysis, it may be important to search for a large deletion in those patients. Our simple methods to identify deletions and to determine the boundaries of a deletion would facilitate the identification of such patients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available