4.6 Article

CaM kinase II regulation of CRHSP-28 phosphorylation in cultured mucosal T84 cells

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpgi.00534.2002

Keywords

calcium signaling; membrane trafficking; protein kinase; casein kinase II; calcium/calmodulin-dependent protein kinase II

Ask authors/readers for more resources

Ca2+-regulated heat-stable protein of 28 kDa (CRHSP-28; a member of the tumor protein D52 family) is highly expressed in exocrine glands and was shown to regulate digestive enzyme secretion from pancreatic acinar cells. We found CRHSP-28 highly expressed in cultured mucosal secretory T84 cells, consistent with an important regulatory role in apical membrane trafficking. Stimulation of cells with carbachol (CCh) induced rapid, concentration-dependent phosphorylation of CRHSP-28 on at least two serine residues. Isoelectric focusing and immunoblotting were used to characterize cellular mechanisms governing CRHSP-28 phosphorylation. Phosphorylation depends on elevated cellular Ca2+, being maximally induced by ionomycin and thapsigargin and fully inhibited by BAPTA-AM. In vitro phosphorylation of recombinant CRHSP-28 was 10-fold greater by casein kinase II (CKII) than Ca2+/calmodulin-dependent protein kinase II ( CaMKII). However, phosphopeptide mapping studies demonstrated that CaMKII induced an identical phosphopeptide profile to endogenous CRHSP-28 immunoprecipitated from T84 cells. Although calmodulin antagonists had no effect on CCh-stimulated phosphorylation, disruption of actin filaments by cytochalasin D inhibited phosphorylation by 50%. Confocal microscopy indicated that CRHSP-28 is expressed in perinuclear regions of cells and accumulates immediately below the apical membrane of polarized monolayers following CCh stimulation. CaMKII was also localized to the subapical cytoplasm and was clearly displaced following actin filament disruption. These data suggest that CRHSP-28 phosphorylation is regulated by a CaMKII-like enzyme and likely involves a translocation of the protein within the apical cytoplasm of epithelial cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available