4.7 Article

Dynamic modeling of compliant constant-force compression mechanisms

Journal

MECHANISM AND MACHINE THEORY
Volume 38, Issue 12, Pages 1469-1487

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0094-114X(03)00098-3

Keywords

-

Ask authors/readers for more resources

A mathematical dynamic model is derived for compliant, constant-force compression mechanisms, based on the pseudo-rigid-body model simplification of the device. The compliant constant-force compression mechanism (CFCM) is a slider mechanism incorporating large-deflection beams, which outputs near-constant-force across the range of its designed deflection. The equation of motion is successfully calibrated with empirical data from five separate mechanisms, comprising two basic configurations of CFCMs. The dynamic equation is derived from a generalized pseudo-rigid-body model. This allows every configuration to be represented by the same model, so a separate treatment is not required for each configuration. An unexpected dynamic trait of the constant-force mechanism is discovered. There exists a range of input deflection frequencies for which the output force of the mechanism is nearer to constant-force than it is with static input deflections. (C) 2003 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available