4.6 Review

Continuous flow techniques in organic synthesis

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 9, Issue 23, Pages 5708-5723

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.200305212

Keywords

automated synthesis; combinatorial chemistry; flow-through processes; monolithic materials; polymers; reactors

Ask authors/readers for more resources

As part of the dramatic changes associated with the need for preparing compound libraries in pharmaceutical and agrochemical research laboratories, the search for new technologies that allow automation of synthetic processes has become one of the main topics. Despite this strong trend for automation high-throughput chemistry is still carried out in batches, whereas flow-through processes are rather restricted to production processes. This is far from understandable because the main advantages of that approach are facile automation, reproducibility, safety, and process reliability, because constant reaction parameters can be assured. Indeed, methods and technologies are missing that allow rapid transfer from the research level to process development without time-consuming adaptation and optimization of methods from the laboratory scale to production plant scale. Continuous-flow processes are considered as a universal lever to overcome these restrictions and, only recently, joint efforts between synthetic and polymer chemists and chemical engineers have resulted in the first continuous-flow devices and microreactors; these allow rapid preparation of compounds with minimum workup. Many of these approaches use immobilized reagents and catalysts, which are embedded in a structured flow-through reactor. It is generally accepted, that for achieving best reaction and kinetic parameters for convective-flow processes monolithic materials are ideally suited as solid phases or polymer supports. In addition, immobilization techniques have to be developed that allow facile regeneration of the active species in the reactor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available